5G Radio Access Network (RAN) dis-aggregation has opened up opportunities toward the 2nd phase of 5G. 3GPP and Telecom industries have defined backhaul, fronthaul, and mid-haul transport interfaces, as well as functional splits to incorporate network flexibility and openness. In this work, splits 6 and 7 (7.2) of 3GPP are addressed for implementing sub-6 GHz future wireless mobile communication networks. The 5G-airsimulator has been considered to simulate New Radio 2.6 GHz, 3.5 GHz, and 5.62 GHz frequency bands by using Video (VI) and Video plus Best-Effort (VI+BE) with the Proportional Fair (PF) packet scheduler. The split 6 is ideal for small cell deployment, while split 7, (mainly sub-split 7.2) requires high fiber capacity, which may increase the price of the fronthaul. In the simulations, we have considered a uniform user distribution and reuse pattern three. By assuming a set of cost parameters and a given price for the traffic, we have analysed the cost/revenue trade-off of outdoor pico/micro cells, while comparing the implementation of functional splits 6 and 7 with scenarios without splitting. It is shown that, for all bands, for cell radii up to 500-600 m the split 6 and 7 provides higher revenue and profit compared to the case without splitting (with slight advantage for split 7).