2016
DOI: 10.1016/j.matpur.2016.02.005
|View full text |Cite
|
Sign up to set email alerts
|

An extremal eigenvalue problem arising in heat conduction

Abstract: International audienceThis article is devoted to the study of two extremal problems arising naturally in heat conduction processes. We look for optimal configurations of thermal axisymmetric fins and model this problem as the issue of (i) minimizing (for the worst shape) or (ii) maximizing (for the best shape) the first eigenvalue of a selfadjoint operator having a compact inverse. We impose a pointwise lower bound on the radius of the fin, as well as a lateral surface constraint. Using particular perturbation… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?