Abstract-This paper presents a dispersive finite difference time domain (FDTD) method suitable for the analysis of electromagnetic field rotator (and cloaking) devices. The method employs a coordinate transformation which accurately accounts for the radial dependence of the permittivity and permeability tensors, with Drude material models applied to the respective diagonal elements. The key aspect of the present formulation is the inclusion of the radial dependence of the plasma frequency, which makes this formalism quite attractive for the modeling of a general class of cloaking and field rotator geometries. Firstly, the method is validated by comparing its results with a previously published simulation of a cloaking device. Then, it is applied for the first time to the analysis of dispersive effects on the performance of field rotators.