Field Programmable Gate Arrays (FPGAs) are increasingly being used to implement large datapath-oriented application that are designed to process multiple-bit wide data. Studies have shown that the regularity of these multi-bit signals can be effectively exploited to reduce the implementation area of datapath circuits on FPGAs that employ the traditional bidirectional routing. Most of modern FPGAs, however, employ unidirectional routing tracks which are more area and delay efficient. No study has investigated the design of multi-bit routing resources that can effectively transport multiple-bit wide signals using unidirectional routing tracks. This paper presents such an investigation of architectures which employ multi-bit connections and unidirectional routing resources to exploit datapath regularity. It is experimentally shown that unidirectional multi-bit architectures are 8.6% more area efficient than the conventional architecture. Additionally, this paper determines the most are efficient proportion of multi-bit connections.