2012
DOI: 10.5573/jsts.2012.12.2.150
|View full text |Cite
|
Sign up to set email alerts
|

An FPGA-based Parallel Hardware Architecture for Real-time Eye Detection

Abstract: Abstract-Eye detection is widely used in applications, such as face recognition, driver behavior analysis, and human-computer interaction. However, it is difficult to achieve real-time performance with software-based eye detection in an embedded environment. In this paper, we propose a parallel hardware architecture for real-time eye detection. We use the AdaBoost algorithm with modified census transform(MCT) to detect eyes on a face image. We parallelize part of the algorithm to speed up processing. Several d… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2013
2013
2020
2020

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 28 publications
0
3
0
1
Order By: Relevance
“…Em relação aos recursos usados, o compilador Quartus II reportou um uso de 2.292 unidades lógicas, o que corresponde a 7% do total disponível, se mostrando um design muito compacto. Para um outro trabalho disponível na literatura, Kim et al (2012) mostram um uso de aproximadamente 39.914 unidades lógicas, que para a FPGA escolhida por eles corresponde a um uso de 76% das unidades lógicas disponíveis.…”
Section: Resultsunclassified
“…Em relação aos recursos usados, o compilador Quartus II reportou um uso de 2.292 unidades lógicas, o que corresponde a 7% do total disponível, se mostrando um design muito compacto. Para um outro trabalho disponível na literatura, Kim et al (2012) mostram um uso de aproximadamente 39.914 unidades lógicas, que para a FPGA escolhida por eles corresponde a um uso de 76% das unidades lógicas disponíveis.…”
Section: Resultsunclassified
“…In this method the eye position is detected via a recursive process. This method can detect the eye accurately, but it is computationally expensive, demanding and high contrast image is required [21][22][23]. In principle, the template matching technique is weak in pattern rotations and scale changes.…”
Section: Eye Gaze Techniquesmentioning
confidence: 99%
“…The appearance based methods [15, 27-29, 33, 40] may include pupil and purkinje or pupil and glint vector for eye detection. Shape based methods [9,20,27,32,35] Template based methods [21,22] use deformable template or between the eyes methods [8]. The other methods can use combination of the two or some of the above mentioned methods.…”
Section: Feature Based Comparison Of Different Eye Gaze Techniquesmentioning
confidence: 99%
See 1 more Smart Citation