Cyclic electron flow (CEF) around photosystem I is thought to balance the ATP/NADPH energy budget of photosynthesis, requiring that its rate be finely regulated. The mechanisms of this regulation are not well understood. We observed that mutants that exhibited constitutively high rates of CEF also showed elevated production of H 2 O 2 . We thus tested the hypothesis that CEF can be activated by H 2 O 2 in vivo. CEF was strongly increased by H 2 O 2 both by infiltration or in situ production by chloroplastlocalized glycolate oxidase, implying that H 2 O 2 can activate CEF either directly by redox modulation of key enzymes, or indirectly by affecting other photosynthetic processes. CEF appeared with a half time of about 20 min after exposure to H 2 O 2 , suggesting activation of previously expressed CEF-related machinery. H 2 O 2 -dependent CEF was not sensitive to antimycin A or loss of PGR5, indicating that increased CEF probably does not involve the PGR5-PGRL1 associated pathway. In contrast, the rise in CEF was not observed in a mutant deficient in the chloroplast NADPH:PQ reductase (NDH), supporting the involvement of this complex in CEF activated by H 2 O 2 . We propose that H 2 O 2 is a missing link between environmental stress, metabolism, and redox regulation of CEF in higher plants. I n oxygenic photosynthesis, linear electron flow (LEF) is the process by which light energy is captured to drive the extraction of electrons and protons from water and transfer them through a system of electron carriers to reduce NADPH. LEF is coupled to proton translocation into the thylakoid lumen, generating an electrochemical gradient of protons ðΔμ H +Þ or proton motive force (pmf). The pmf drives the synthesis of ATP to power the reactions of the Calvin-Benson-Bassham (CBB) cycle and other essential metabolic processes in the chloroplast. The pmf is also a key regulator of photosynthesis in that it activates the photoprotective q E response to dissipate excess light energy and downregulates electron transfer by controlling the rate of oxidation of plastoquinol at the cytochrome b 6 f complex (b 6 f), thus preventing the buildup of reduced intermediates (1, 2).LEF results in the transfer or deposition into the lumen of three protons for each electron transferred through PSII, plastoquinone (PQ), b 6 f, plastocyanin, and photosystem I (PSI) to ferredoxin (Fd). The synthesis of one ATP is thought to require the passage of 4.67 protons through the ATP synthase, so that LEF should produce a ratio of ATP/NADPH of about 1.33; this ratio is too low to sustain the CBB cycle or supply ATP required for translation, protein transport, or other ATP-dependent processes (3). In addition, the relative demands for ATP and NADPH can change dramatically depending on environmental, developmental, and other factors, leading to rapid energy imbalances that require dynamical regulation of ATP/NADPH balance.Several alternative electron flow pathways in the chloroplast have been proposed to augment ATP production, thus balancing the ATP/NADPH ...