In recent years, copyright infringement has been one of the most serious problems that hamper the development of the culture and arts industry. Due to the limitations of existing image search services, these infringements have not been properly identified and the number of infringements has been increasing continuously. To uncover these infringements and handle big data extracted from copyright photos, we propose a photo copyright identification framework to accurately handle manipulations of stolen photos. From a collage of cropped photos, regions of interest (RoIs) are detected to reduce the influence of cropping and identify each photo by Image RoI Detection. Binary descriptors for quick database search are generated from the RoIs by Image Hashing robustly to geometric and color manipulations. The matching results of Image Hashing are verified by measuring their similarity using the proposed Image Verification to reduce false positives. Experimental results demonstrate that the proposed framework outperforms other image retrieval methods in identification accuracy and significantly reduces the false positive rate by 2.8%. This framework is expected to identify copyright infringements in practical situations and have a positive effect on the copyright market.