Museum collections are an important source for resolving taxonomic issues and species delimitation. Type specimens as name-bearing specimens, traditionally used in morphology-based taxonomy, are, due to the progress in historical DNA methodology, increasingly used in molecular taxonomic studies. Museum collections are subject to constant deterioration and major disasters. The digitisation of collections offers a partial solution to these problems and makes museum collections more accessible to the wider scientific community. The Extended Specimen Approach (ESA) is a method of digitisation that goes beyond the physical specimen to include the historical information stored in the collection. The collections of the Natural History Museum Vienna represent one of the largest non-university research centres in Europe and, due to their size and numerous type specimens, are frequently used for taxonomic studies by visiting and resident scientists. Recently, a version of ESA was presented in the common catalogue of the Fish and Evertebrata Varia collections and extended to include genetic information on type specimens in a case study of a torpedo ray. Here the case study was extended to a heterogeneous selection of historical type series from different collections with the type locality of Vienna. The goal was to apply the ESA, including genetic data on a selected set of type material: three parasitic worms, three myriapods, two insects, twelve fishes, and one bird species. Five hundred digital items (photographs, X-rays, scans) were produced, and genetic analysis was successful in eleven of the 21 type series. In one case a complete mitochondrial genome was assembled, and in another case ten short fragments (100–230 bp) of the cytochrome oxidase I gene were amplified and sequenced. For five type series, genetic analysis confirmed their taxonomic status as previously recognised synonyms, and for one the analysis supported its status as a distinct species. For two species, genetic information was provided for the first time. This catalogue thus demonstrates the usefulness of ESA in providing digitised data of types that can be easily made available to scientists worldwide for further study.