2021
DOI: 10.3389/fnbot.2021.723336
|View full text |Cite
|
Sign up to set email alerts
|

An Image-Based Benchmark Dataset and a Novel Object Detector for Water Surface Object Detection

Abstract: Water surface object detection is one of the most significant tasks in autonomous driving and water surface vision applications. To date, existing public large-scale datasets collected from websites do not focus on specific scenarios. As a characteristic of these datasets, the quantity of the images and instances is also still at a low level. To accelerate the development of water surface autonomous driving, this paper proposes a large-scale, high-quality annotated benchmark dataset, named Water Surface Object… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
13
0
6

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 31 publications
(19 citation statements)
references
References 45 publications
0
13
0
6
Order By: Relevance
“…Tian et al [166] embeded multiple Atrous Spatial Pyramid Pooling (ASPP) modules in FPN to improve the detection performance for ships at different scales. Zhou et al [182] proposed CRB-Net, a multi-scale image feature learning based method that can carry out adaptive weight adjustment (improved BIFPN) during feature fusion by attention mechanism and Mish activation (a novel self-regularized non-monotonic activation function [183]). Two SPPNets were also used to increase the receptive field of the features in layers 4 and 5 to isolate the most significant contextual features.…”
Section: Feature Learningmentioning
confidence: 99%
See 1 more Smart Citation
“…Tian et al [166] embeded multiple Atrous Spatial Pyramid Pooling (ASPP) modules in FPN to improve the detection performance for ships at different scales. Zhou et al [182] proposed CRB-Net, a multi-scale image feature learning based method that can carry out adaptive weight adjustment (improved BIFPN) during feature fusion by attention mechanism and Mish activation (a novel self-regularized non-monotonic activation function [183]). Two SPPNets were also used to increase the receptive field of the features in layers 4 and 5 to isolate the most significant contextual features.…”
Section: Feature Learningmentioning
confidence: 99%
“…WSODD Dataset [182] or Water Surface Object Detection dataset was developed for obstacle detection on water surfaces. The images include oceans, rivers, and lakes that were acquired at different times and weather conditions, such as during the day, twilight, and night, sunny, cloudy, or foggy conditions.…”
Section: Generic Sod Datasetsmentioning
confidence: 99%
“…Ainda que haja promissores detectores de objetos em estado da arte disponíveis conforme mencionado acima, há uma significativa escassez de abordagens baseadas em arquiteturas convolucionais que são especializadas na detecc ¸ão de objetos localizados em superfície de água [Prasad et al 2017]. Isso ocorre principalmente em virtude de existirem poucas bases de imagens disponíveis publicamente que retratam objetos em superfície de água [Zhou et al 2021]. Das poucas bases disponíveis, a maioria é caracterizada por não ser representativa em relac ¸ão à quantidade de instâncias por categoria.…”
Section: Introduc ¸ãOunclassified
“…Recentemente, foi disponibilizada uma base de imagens anotadas que retratam, com notável qualidade e variedade, objetos localizados em superfície de água. Essa base, intitulada como WSODD (Water Surface Object Detection Dataset) [Zhou et al 2021], mitiga os pontos levantados anteriormente e será utilizada como referência para comparar a performance do detector YOLOv5 com diferentes detectores clássicos de objetos. Considerando o que foi exposto acima, as principais contribuic ¸ões deste artigo são:…”
Section: Introduc ¸ãOunclassified
See 1 more Smart Citation