“…From the 10 studies that proposed an unsupervised segmentation method (i.e., 27% of the total number of studies included), one used deep learning (Atlason et al, 2019). In total, eleven studies used Convolutional Neural Networks (Rachmadi, et al, 2018;Li et al, 2018;Guerrero et al, 2017;Moeskops et al, 2018;Ghafoorian et al, 2016;Hong et al, 2020;Manjón et al, 2018;Liu et al, 2020;Diniz et al, 2018;Schirmer et al, 2019), four studies proposed a method based on k-nearest neighbours (k-NN) (Sundaresan et al, 2019;Jiang et al, 2018;Ling et al, 2018;Griffanti et al, 2016), four studies proposed regression models (Knight et al, 2018;Dadar et al, 2017a;Zhan et al, 2017;Ding et al, 2020), and three studies used Random forest (RF) in their proposed algorithms (Stone et al, 2016;Park et al, 2018;Roy et al, 2015). Two studies proposed a method based on Fuzzy C mean algorithm (Zhan et al, 2015;Valverde et al, 2017) and three proposed improvements to a Gaussian Mixture Model framework (Sudre et al, 2015(Sudre et al, , 2017Fiford et al, 2020), both unsupervised methods.…”