2020
DOI: 10.3934/naco.2020007
|View full text |Cite
|
Sign up to set email alerts
|

An improved ARMA(1, 1) type fuzzy time series applied in predicting disordering

Abstract: Fuzzy time series shows great advantages in dealing with incomplete or unreasonable data. But most of them are based on fuzzy AR time series model, so it is necessary to add MA variables to the fuzzy time series [10] to make it more accurate. An improved ARMA(1,1) type fuzzy time series based on fuzzy logic group relations including fuzzy MA variables along with fuzzy AR variables was proposed in this paper. To take full account of the errors, the prediction errors were added to the forecast fuzzy sets, and it… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?