2022
DOI: 10.21203/rs.3.rs-1237507/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

An improved constrained Bayesian probabilistic matrix factorization algorithm

Abstract: Given the increasing growth of the Web and consequently the growth of e-commerce, the application of recommendation systems becomes more and more extensive. A good recommendation algorithm can provide a better user experience. In the collaborative filtering algorithm recommendation system, many existing approaches to collaborative filtering can neither handle very large datasets nor easily deal with users who have very few ratings, this paper proposes an improved constrained Bayesian probability matrix factor… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 26 publications
0
0
0
Order By: Relevance