2023
DOI: 10.1007/s00020-023-02743-6
|View full text |Cite
|
Sign up to set email alerts
|

An Improved Discrete p-Hardy Inequality

Florian Fischer,
Matthias Keller,
Felix Pogorzelski
Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 18 publications
0
2
0
Order By: Relevance
“… xXVfalse(xfalse)|u|ppfalse(xfalse)xXdivVfalse(ffalse)bp1fp1false(xfalse)upfalse(xfalse),uCcfalse(Xfalse).$$\begin{align} \sum _{x\in X} V(x) |\nabla u|^p_p(x)\geqslant - \sum _{x\in X}\frac{{\rm div}{\left[V (\nabla f)_b^{p-1}\right]}}{f^{p-1}}(x) u^{p}(x), \quad \forall \; u \in C_c(X). \end{align}$$The proof of [6, Proposition 3] used somehow an equivalent form of () with V1$V \equiv 1$ over N${\mathbb {N}}$, see also [5, Theorem 3.1] for locally summable graphs.…”
Section: Further Remarksmentioning
confidence: 99%
See 1 more Smart Citation
“… xXVfalse(xfalse)|u|ppfalse(xfalse)xXdivVfalse(ffalse)bp1fp1false(xfalse)upfalse(xfalse),uCcfalse(Xfalse).$$\begin{align} \sum _{x\in X} V(x) |\nabla u|^p_p(x)\geqslant - \sum _{x\in X}\frac{{\rm div}{\left[V (\nabla f)_b^{p-1}\right]}}{f^{p-1}}(x) u^{p}(x), \quad \forall \; u \in C_c(X). \end{align}$$The proof of [6, Proposition 3] used somehow an equivalent form of () with V1$V \equiv 1$ over N${\mathbb {N}}$, see also [5, Theorem 3.1] for locally summable graphs.…”
Section: Further Remarksmentioning
confidence: 99%
“…Inspired by [4], they showed that the weights false(wnfalse)$(w_n)$ are critical in many aspects, in particular the inequality () cannot hold with any sequence wn$\gneq w_n$. See also [6] for similar improvement of () with general p>1$p > 1$.…”
Section: Introductionmentioning
confidence: 99%