2017
DOI: 10.1504/ijisdc.2017.10003776
|View full text |Cite
|
Sign up to set email alerts
|

An improved extreme learning machine to classify multinomial datasets using particle swarm optimisation

Abstract: Abstract:In this paper, we propose a particle swarm-based extreme learning machine (ELM) to classify datasets with varying number of classes. This work emphasises on a couple of important parameters, like maximisation of classification accuracy and minimisation of training time. As a machine classifier, an ELM has been chosen, which is an improvement over back propagation network. For each of the input dataset an optimised target was determined by using particle swarm optimisation (PSO) technique. Those specif… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 4 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?