This paper is aimed to analyze the feature selection process based on different statistical methods viz., Correlation, Gain Ratio, Information gain, OneR, Chi-square MapReduce model, Fisher’s exact test for agricultural data. During the recent past, Fishers exact test was commonly used for feature selection process. However, it supports only for small data set. To handle large data set, the Chi square, one of the most popular statistical methods is used. But, it also finds irrelevant data and thus resultant accuracy is not as expected. As a novelty, Fisher’s exact test is combined with Map Reduce model to handle large data set. In addition, the simulation outcome proves that proposed fisher’s exact test finds the significant attributes with more accurate and reduced time complexity when compared to other existing methods.