Background: Hyperthyroidism of Graves' disease is caused by auto-antibodies to human thyrotropin receptor (hTSH-R). To elucidate important T-cell epitopes in TSH-R, we studied three models of immunity to TSH-R in mice. Methods: Mice transgenic for histocompatibility leukocyte antigen DR3 or DR2 were immunized with cDNA for hTSH-R-extracellular domain (hTSH-R-ECD), or hTSH-R-ECD protein, or hTSH-R peptide epitopes. Proliferative responses of immunized splenocytes to epitopes derived from the hTSH-ECD sequence, anti-TSH-R antibody responses, serum thyroxine and TSH, and thyroid histology were recorded. Results: DR3 mice responded to genomic immunization with proliferative responses to several epitopes, which increased in intensity and spread to include more epitopes, during a 6-week immunization program. DR2 transgenic mice developed weak proliferative responses. Both types of mice developed anti-TSH-R antibodies measured by enzyme-linked immunosorbent assay or TSH-binding inhibition assay in 16-60% of animals. There was evidence of weak thyroid stimulation in one group of animals. Immunization of DR3 transgenic mice to hTSH-R-ECD protein induced a striking response to an epitope with sequence ISRIYVSIDVTLQQLES (aa78-94). Immunization to peptides derived from the TSH-R-ECD sequence (including aa78-94) caused strong responses to the epitopes, and development of immune responses to several other nonoverlapping epitopes within the hTSH sequence (epitope spreading) and antibodies reacting with hTSH-R. This implies that immunization with hTSH-R epitopes produced immunity to mouse TSH-R. Conclusion: T-cell and B-cell responses to genetic immunization differ in DR3 and DR2 transgenic mice, and there is less genetic control of antibody than of T-cell responses. During both genomic and peptide epitope immunization there was evidence of epitope spreading during the immunization. Several functionally important epitopes are evident, especially aa78-94. However, if similar progressive epitope recruitment occurs in human disease, epitope-based therapy will be difficult to achieve.