A novel multistage attitude determination alignment algorithm with different velocity models is proposed to implement the alignment process of in-motion attitude determination alignment (IMADA) aided by the ground velocity expressed in body frame () in this paper. Normally, The-based IMADA is used to achieve the coarse alignment for strapdown inertial navigation system (SINS). The higher the coarse alignment accuracy, the better initial condition can be achieved to guarantee the performance of the subsequent fine alignment. Consider the influence of the principal model errors and the calculation errors on the alignment accuracy in traditional-based IMADA, this paper deals with a novel alignment algorithm by integrating two different velocity-based IMADAs and the multiple repeated alignment processes. The power of this novel alignment algorithm lies in eliminating the principal model errors and decreasing the calculation errors. Then, the higher alignment accuracy is achieved. Simulations and vehicle experiment are performed to demonstrate the validity of the proposed algorithm.