2014
DOI: 10.1155/2014/813654
|View full text |Cite
|
Sign up to set email alerts
|

An Improved Interacting Multiple Model Algorithm Used in Aircraft Tracking

Abstract: There are some problems in traditional interacting multiple model algorithms (IMM) when used in target tracking systems. For instance, the mode transition matrix is inaccurate and cannot be determined when the sojourn times are not known. To solve these problems, an optimal mode transition matrix IMM (OMTM-IMM) algorithm is proposed in this paper. The linear minimum variance theory is used to calculate the mode transition matrix which depends on the continuous system state rather than the sojourn times in this… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2016
2016
2022
2022

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 19 publications
0
1
0
Order By: Relevance
“…The proposed filter is more accurate than the Kalman filter when there are abrupt changes in the path of the vehicle. In order to improve the accuracy of the traditional IMM algorithm, the optimal mode transition matrix IMM (OMTM-IMM) algorithm was proposed in [ 22 ]. The OMTM-IMM utilizes the linear minimum variance theory to minimize the error of the initial state and the simulation results show that it outperforms the traditional IMM when the sojourn times of the system are not known.…”
Section: Introductionmentioning
confidence: 99%
“…The proposed filter is more accurate than the Kalman filter when there are abrupt changes in the path of the vehicle. In order to improve the accuracy of the traditional IMM algorithm, the optimal mode transition matrix IMM (OMTM-IMM) algorithm was proposed in [ 22 ]. The OMTM-IMM utilizes the linear minimum variance theory to minimize the error of the initial state and the simulation results show that it outperforms the traditional IMM when the sojourn times of the system are not known.…”
Section: Introductionmentioning
confidence: 99%