2020
DOI: 10.1109/access.2020.3012871
|View full text |Cite
|
Sign up to set email alerts
|

An Improved Interior Point Algorithm for Quantile Regression

Abstract: Quantile regression is a powerful statistical technique for estimating the quantiles of a conditional distribution on the values of covariates. It has been widely used in many fields. In this paper, an improved interior point algorithm for quantile regression is proposed. The algorithm introduces multiple centrality corrections technique into the interior point algorithm for quantile regression. The purpose of introducing the multiple centrality corrections technique is to reduce the overall solution time requ… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 32 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?