2015
DOI: 10.14257/ijgdc.2015.8.1.18
|View full text |Cite
|
Sign up to set email alerts
|

An Improved K-means Algorithm based on Mapreduce and Grid

et al.

Abstract: The traditional K-means

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0
2

Year Published

2017
2017
2023
2023

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 18 publications
(10 citation statements)
references
References 19 publications
0
8
0
2
Order By: Relevance
“…Namun, k-means memiliki masalah dalam sensitivitas penentuan partisi awal jumlah klister. Dapat diketahui bahwa penentuan jumlah klaster sangat penting dalam algoritma k-means (Ma, Gu, Li, Ma, & Wang, 2015). Beberapa artikel (Barakbah & Kiyoki, 2009;Ma et al, 2015;Yadav & Sharma, 2012) menyatakan algoritma k-means sangat tergantung pada penentuan titik pusat klaster awalnya.…”
Section: Pendahuluanunclassified
See 1 more Smart Citation
“…Namun, k-means memiliki masalah dalam sensitivitas penentuan partisi awal jumlah klister. Dapat diketahui bahwa penentuan jumlah klaster sangat penting dalam algoritma k-means (Ma, Gu, Li, Ma, & Wang, 2015). Beberapa artikel (Barakbah & Kiyoki, 2009;Ma et al, 2015;Yadav & Sharma, 2012) menyatakan algoritma k-means sangat tergantung pada penentuan titik pusat klaster awalnya.…”
Section: Pendahuluanunclassified
“…Dapat diketahui bahwa penentuan jumlah klaster sangat penting dalam algoritma k-means (Ma, Gu, Li, Ma, & Wang, 2015). Beberapa artikel (Barakbah & Kiyoki, 2009;Ma et al, 2015;Yadav & Sharma, 2012) menyatakan algoritma k-means sangat tergantung pada penentuan titik pusat klaster awalnya. Untuk setiap percobaan, dengan pemilihan pusat klaster awal secara acak, algoritma k-means cenderung menghasilkan klaster yang berbeda.…”
Section: Pendahuluanunclassified
“…Normally the risk factor is identified by machine learning and deep learning algorithm. This work focuses on the accuracy measures in point, we utilize the ELM algorithm with CS-SVM [4] for better optimization and accuracy. For Structured data, Naïve Bayes (NB), CS-SVM, Decision tree (DT) Machine learning algorithm is employed to find the risk of fatal disease.…”
Section: A Risk Factor Predictionmentioning
confidence: 99%
“…Moreover, dynamic replanning of Voronoi diagrams is used for persistent task [31]. K-means clustering is also a very effective method in data science which can promote the workload balance in subregions [32].…”
Section: Related Workmentioning
confidence: 99%