The presence of hydrocarbons in groundwater represents a serious risk of disease. This study tests the timing, concentration and amount of BTEX oil components during the oil vertical movement though small-scale lysimeters containing undisturbed soils of different textures and by simulating the fate of oil spills under continuous water application. Three soil types were studied: a sandy-textured, highly permeable Eutric Arenosol, AR-eu, a loamy/sandy-loamy textured Haplic Chernozem, CH-ha, and a loamy-clayey/clayey textured, swell-shrink, Luvic-Chernic Phaeozem, PH-ch-lv. Crude oil was applied as a batch application using an equivalent of 5 g oil /100 g of dry soil for a 0.02 m height in each lysimeter of the three soils studied. After oil-penetration into the soil, tap water was applied on a daily basis above the lysimeters according to infiltration rate. The breakthrough curves of the BTEX compounds show that the highest mobility in the investigated sandy AR-eu soils and loamy CH-ha soils was found for benzene followed by toluene. The other hydrocarbons only showed a limited mobility. There was no leachate from the swell-shrink PH-ch-lv soil. Soil texture and permeability thus play an important role in the movement of BTEX compounds toward the groundwater. After applying an amount of water of 200% from the total soil porosity, or an equivalent of 800-850 mm of precipitation, the leaching process did not end and there still is a leaching potential remained for these hydrocarbons. The highest amount leached per mm of effluent was also for benzene followed by toluene. There were highly significant, direct correlations between the amounts of the hydrocarbons leached and the cumulative effluent volume. The swell-shrink soils are still an effective barrier to hydrocarbons` movement toward groundwater. The BTEX aromatic hydrocarbons leached from the soils, if reach the groundwater, represent sources of pollution with severe risks for human health.