2022
DOI: 10.32985/ijeces.13.6.5
|View full text |Cite
|
Sign up to set email alerts
|

An improved normalized gain-based score normalization technique for spoof detection algorithm

Abstract: A spoof detection algorithm supports the speaker verification system to examine the false claims by an imposter through careful analysis of input test speech. The scores are employed to categorize the genuine and spoofed samples effectively. Under the mismatch conditions, the false acceptance ratio increases and can be reduced by appropriate score normalization techniques. In this article, we are using the normalized Discounted Cumulative Gain (nDCG) norm derived from ranking the speaker’s log-likelihood score… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?