In this paper, a new hybrid algorithm based on two meta-heuristic algorithms is presented to improve the optimization capability of original algorithms. This hybrid algorithm is realized by the deep ensemble of two new proposed meta-heuristic methods, i.e., slime mold algorithm (SMA) and arithmetic optimization algorithm (AOA), called DESMAOA. To be specific, a preliminary hybrid method was applied to obtain the improved SMA, called SMAOA. Then, two strategies that were extracted from the SMA and AOA, respectively, were embedded into SMAOA to boost the optimizing speed and accuracy of the solution. The optimization performance of the proposed DESMAOA was analyzed by using 23 classical benchmark functions. Firstly, the impacts of different components are discussed. Then, the exploitation and exploration capabilities, convergence behaviors, and performances are evaluated in detail. Cases at different dimensions also were investigated. Compared with the SMA, AOA, and another five well-known optimization algorithms, the results showed that the proposed method can outperform other optimization algorithms with high superiority. Finally, three classical engineering design problems were employed to illustrate the capability of the proposed algorithm for solving the practical problems. The results also indicate that the DESMAOA has very promising performance when solving these problems.