Abstract:We focus on the problem of computing approximate Nash equilibria in bimatrix games. In particular, we consider the notion of approximate well-supported equilibria, which is one of the standard approaches for approximating equilibria. It is already known that one can compute an ε-well-supported Nash equilibrium in time nO (log n/ε2), for any ε > 0, in games with n pure strategies per player. Such a running time is referred to as quasi-polynomial. Regarding faster algorithms, it has remained an open problem f… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.