This chapter presents Kalman filters for tracking moving objects and their efficient design strategy based on steady-state performance analysis. First, a dynamic/measurement model is defined for the tracking systems, assuming both position-only and position-velocity measurements. Then, problems with the Kalman filter design in tracking systems are summarized, and an efficient steady-state performance index proposed by the author [termed the root-mean-squared error index (the RMS index)] is introduced to resolve these concerns. The analytical relationship between the proposed RMS index and the covariance matrix of the process noise is shown, leading to a proposed design strategy that is based on this relationship. Theoretical performance analysis is conducted using the performance indices to show the optimality of the design strategy. Numerical simulations show the validity of the theoretical analyses and effectiveness of the proposed strategy in realistic situations. In addition, the optimal performance of the position-only-measured and position-velocity-measured systems is analyzed and compared. This comparison shows that the position-velocity-measured Kalman filter tracking is accurate when compared with the position-only-measured filter.