2019
DOI: 10.3390/app9173561
|View full text |Cite
|
Sign up to set email alerts
|

An Improved Second-Order Blind Identification (SOBI) Signal De-Noising Method for Dynamic Deflection Measurements of Bridges Using Ground-Based Synthetic Aperture Radar (GBSAR)

Abstract: Ground-based synthetic aperture radar (GBSAR) technology has been widely used for bridge dynamic deflection measurements due to its advantages of non-contact measurements, high frequency, and high accuracy. To reduce the influence of noise in dynamic deflection measurements of bridges using GBSAR-especially for noise of the instantaneous vibrations of the instrument itself caused by passing vehicles-an improved second-order blind identification (SOBI) signal de-noising method is proposed to obtain the de-noise… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
16
0
1

Year Published

2020
2020
2022
2022

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(17 citation statements)
references
References 33 publications
0
16
0
1
Order By: Relevance
“…İkinci dereceden kör tanımlama (SOBI) yöntemi, kaynak sinyali ve karıştırma matrisinin en iyi tahminini çözebilen ve ayrıca farklı kaynak sinyallerinden ayrılmış sinyal bileşenlerini elde edebilen orijinal gözlem verilerinin ikinci dereceden istatistiklerine dayanan kör kaynak ayırma yöntemidir (Belouchrani, Abed-Meraim, Cardoso, & Moulines, 1997). SOBI yöntemi, kaynak sinyal bileşenini tahmin edebilen ve göreceli olarak daha az veri noktası kullanarak birden fazla Gauss gürültü kaynağını ayırabilmektedir (Liu, Wang, Huang, & Yang, 2019). Bir dizi çalışmada modal parametre tanımlaması için umut verici bir alternatif olarak kabul edilmiştir (Rainieri, 2014).…”
Section: İkinci Dereceden Kör Tanımlama Algoritması (Sobi)unclassified
“…İkinci dereceden kör tanımlama (SOBI) yöntemi, kaynak sinyali ve karıştırma matrisinin en iyi tahminini çözebilen ve ayrıca farklı kaynak sinyallerinden ayrılmış sinyal bileşenlerini elde edebilen orijinal gözlem verilerinin ikinci dereceden istatistiklerine dayanan kör kaynak ayırma yöntemidir (Belouchrani, Abed-Meraim, Cardoso, & Moulines, 1997). SOBI yöntemi, kaynak sinyal bileşenini tahmin edebilen ve göreceli olarak daha az veri noktası kullanarak birden fazla Gauss gürültü kaynağını ayırabilmektedir (Liu, Wang, Huang, & Yang, 2019). Bir dizi çalışmada modal parametre tanımlaması için umut verici bir alternatif olarak kabul edilmiştir (Rainieri, 2014).…”
Section: İkinci Dereceden Kör Tanımlama Algoritması (Sobi)unclassified
“…(9)(10)(11)(12) In WT noise reduction, it is necessary to manually select the appropriate wavelet base, the number of wavelet decomposition layers, and the noise reduction threshold, which cause a lack of adaptability. (13,14) In addition, WT is not suitable for nonlinear signals, which means that it is not suitable for analyzing the dynamic deflection signals of monitored urban bridges. If a monitored bridge is damaged, the obtained dynamic deflection should be a typical nonlinear and nonstationary signal.…”
Section: Introductionmentioning
confidence: 99%
“…If a monitored bridge is damaged, the obtained dynamic deflection should be a typical nonlinear and nonstationary signal. (14,15) EMD is an adaptive decomposition method proposed by Huang et al in 1998, which overcomes the limitations of wavelet analysis. (16) It can adaptively decompose a signal into a series of intrinsic mode functions (IMFs) of different scales without artificially selecting the basis function and can achieve the adaptive filtering of the signal.…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations