Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Problems such as low light, similar background colors, and noisy image acquisition often occur when collecting images of lunar surface obstacles. Given these problems, this study focuses on the AD-Census algorithm. In the original Census algorithm, in the bit string calculated with the central pixel point, the bit string will be affected by the noise that the central point is subjected to. The effect of noise results in errors and mismatching. We introduce an improved algorithm to calculate the average window pixel for solving the problem of being susceptible to the central pixel value and improve the accuracy of the algorithm. Experiments have proven that the object contour in the grayscale map of disparity obtained by the improved algorithm is more apparent, and the edge part of the image is significantly improved, which is more in line with the real scene. In addition, because the traditional Census algorithm matches the window size in a fixed rectangle, it is difficult to obtain a suitable window in the image range of different textures, affecting the timeliness of the algorithm. An improvement idea of area growth adaptive window matching is proposed. The improved Census algorithm is applied to the AD-Census algorithm. The results show that the improved AD-Census algorithm has been shown to have an average run time of 5.3% and better matching compared to the traditional AD-Census algorithm for all tested image sets. Finally, the improved algorithm is applied to the simulation environment, and the experimental results show that the obstacles in the image can be effectively detected. The improved algorithm has important practical application value and is important to improve the feasibility and reliability of obstacle detection in lunar exploration projects.
Problems such as low light, similar background colors, and noisy image acquisition often occur when collecting images of lunar surface obstacles. Given these problems, this study focuses on the AD-Census algorithm. In the original Census algorithm, in the bit string calculated with the central pixel point, the bit string will be affected by the noise that the central point is subjected to. The effect of noise results in errors and mismatching. We introduce an improved algorithm to calculate the average window pixel for solving the problem of being susceptible to the central pixel value and improve the accuracy of the algorithm. Experiments have proven that the object contour in the grayscale map of disparity obtained by the improved algorithm is more apparent, and the edge part of the image is significantly improved, which is more in line with the real scene. In addition, because the traditional Census algorithm matches the window size in a fixed rectangle, it is difficult to obtain a suitable window in the image range of different textures, affecting the timeliness of the algorithm. An improvement idea of area growth adaptive window matching is proposed. The improved Census algorithm is applied to the AD-Census algorithm. The results show that the improved AD-Census algorithm has been shown to have an average run time of 5.3% and better matching compared to the traditional AD-Census algorithm for all tested image sets. Finally, the improved algorithm is applied to the simulation environment, and the experimental results show that the obstacles in the image can be effectively detected. The improved algorithm has important practical application value and is important to improve the feasibility and reliability of obstacle detection in lunar exploration projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.