Radar electronic reconnaissance is an important part of modern and future electronic warfare systems and is the primary method to obtain non-cooperative intelligence information. As the task requirement of radar electronic reconnaissance, it is necessary to identify the non-cooperative signals from the mixed signals. However, with the complexity of battlefield electromagnetic environment, the performance of traditional recognition system is seriously affected. In this paper, a new recognition method based on optimal classification atom and improved double chains quantum genetic algorithm (IDCQGA) is researched, optimal classification atom is a new feature for radar signal recognition, IDCQGA with symmetric coding performance can be applied to the global optimization algorithm. The main contributions of this paper are as follows: Firstly, in order to measure the difference of multi-class signals, signal separation degree based on distance criterion is proposed and established according to the inter-class separability and intra-class aggregation of the signals. Then, an IDCQGA is proposed to select the best atom for classification under the constraint of distance criterion, and the inner product of the signal and the best atom for classification is taken as the eigenvector. Finally, the extreme learning machine (ELM) is introduced as classifier to complete the recognition of signals. Simulation results show that the proposed method can improve the recognition rate of multi-class signals and has better processing ability for overlapping eigenvector parameters.