The use of counterfeit integrated circuits (ICs) in electronic products decreases its quality and lifetime. Recycled ICs can be detected by the method of aging analysis. Aging is carried out through reliability analysis with the effect of hot carrier injection and bias temperature instability (BTI). In this work, three machine learning methods, namely Kmeans clustering, back propagation neural network (BPNN) and support vector machines (SVMs), are used to detect the recycled IC aged for a shorter period (1 day) with minimum data size. This work also distinguishes the effects of degradation due to process variations and reliability effects. The reliability and Monte Carlo simulation are performed on benchmark circuits such as c17, s27, b02 and fully differential folded-cascode amplifier using the Cadence Virtuoso tool, and the parameters such as minimum voltage, delay value, supply current, gain, phase margin and bandwidth are measured. Machine learning methods are developed using MATLAB to train and classify the parameters. From the results obtained, it is observed that the classification rate for the benchmark circuits is 100%, and using BPNN, K-means clustering and SVM and the proposed method, recycled IC or used IC is detected even if it was used for 1 day.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.