Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Distributed database system (DDBS) design is still an open challenge even after decades of research, especially in a dynamic network setting. Hence, to meet the demands of high-speed data gathering and for the management and preservation of huge systems, it is important to construct a distributed database for real-time data storage. Incidentally, some fragmentation schemes, such as horizontal, vertical, and hybrid, are widely used for DDBS design. At the same time, data allocation could not be done without first physically fragmenting the data because the fragmentation process is the foundation of the DDBS design. Extensive research have been conducted to develop effective solutions for DDBS design problems. But the great majority of them barely consider the RDDBS's initial design. Therefore, this work aims at proposing a clustering-based horizontal fragmentation and allocation technique to handle both the early and late stages of the DDBS design. To ensure that each operation flows into the next without any increase in complexity, fragmentation and allocation are done simultaneously. With this approach, the main goals are to minimize communication expenses, response time, and irrelevant data access. Most importantly, it has been observed that the proposed approach may effectively expand RDDBS performance by simultaneously fragmenting and assigning various relations. Through simulations and experiments on synthetic and real databases, we demonstrate the viability of our strategy and how it considerably lowers communication costs for typical access patterns at both the early and late stages of design.
Distributed database system (DDBS) design is still an open challenge even after decades of research, especially in a dynamic network setting. Hence, to meet the demands of high-speed data gathering and for the management and preservation of huge systems, it is important to construct a distributed database for real-time data storage. Incidentally, some fragmentation schemes, such as horizontal, vertical, and hybrid, are widely used for DDBS design. At the same time, data allocation could not be done without first physically fragmenting the data because the fragmentation process is the foundation of the DDBS design. Extensive research have been conducted to develop effective solutions for DDBS design problems. But the great majority of them barely consider the RDDBS's initial design. Therefore, this work aims at proposing a clustering-based horizontal fragmentation and allocation technique to handle both the early and late stages of the DDBS design. To ensure that each operation flows into the next without any increase in complexity, fragmentation and allocation are done simultaneously. With this approach, the main goals are to minimize communication expenses, response time, and irrelevant data access. Most importantly, it has been observed that the proposed approach may effectively expand RDDBS performance by simultaneously fragmenting and assigning various relations. Through simulations and experiments on synthetic and real databases, we demonstrate the viability of our strategy and how it considerably lowers communication costs for typical access patterns at both the early and late stages of design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.