Copper complexes with different ligands (ethylenediaminetetraacetic acid, EDTA, ammonium citrate tribasic, TAC, and alanine, ALA) were studied in aqueous solutions and hydrogels with the aim of setting the optimal conditions for copper stain removal from marble by agar gels, with damage minimization. The stoichiometry and stability of copper complexes were monitored by ultraviolet-visible (UV-Vis) spectroscopy and the symmetry of Cu(II) centers in the different gel formulations was studied by electron paramagnetic resonance (EPR) spectroscopy. Cleaning effectiveness in optimized conditions was verified on marble laboratory specimens through color variations and by determining copper on gels by inductively coupled plasma-mass spectrometry (ICP-MS). Two copper complexes with TAC were identified, one having the known stoichiometry 1:1, and the other 1:2, Cu(TAC)2, never observed before. The stability of all the complexes at different pH was observed to increase with pH. At pH 10.0, the gel’s effectiveness in removing copper salts from marble was the highest in the presence of ALA, followed by EDTA, TAC, and pure agar gel. Limited damage to the marble surface was observed when gels with added EDTA and TAC were employed, whereas agar gel with ALA was determined to be the most efficient and safe cleaning material.