Helices are important secondary structural motifs within proteins and are pivotal in numerous physiological processes. While amino acids (AA) such as alanine and leucine are known to promote helix formation, proline and glycine disfavor it. Helical structure formation, however, also depends on its environment, and hence, prior prediction of a mutational effect on a helical structure is difficult. Here, we employ a reinforcement learning algorithm to develop a predictive model for helixdisrupting mutations. We start with a model to disrupt helices independent of their protein environment. Our results show that only a few mutations lead to a drastic disruption of the target helix. We further extend our approach to helices in proteins and validate the results using rigorous free energy calculations. Our strategy identifies amino acids crucial for maintaining structural integrity and predicts key mutations that could alter protein structure. Through our work, we present a new use case for reinforcement learning in protein structure disruption.