Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The purpose of this longitudinal pilot study was to add to the body of research relating to head kinematics/vibration in sport and their potential to cause short-term alterations in brain function. In horseracing, due to the horse’s movement, repeated low-level accelerations are transmitted to the jockey’s head. To measure this, professional jockeys (2 male, 2 female) wore an inertial measurement unit (IMU) to record their head kinematics while riding out. In addition, a short battery of tests (Stroop, Trail Making Test B, choice reaction time, manual dexterity, and visual function) was completed immediately before and after riding. Pre- and post-outcome measures from the cognitive test battery were compared using descriptive statistics. The average head kinematics measured across all jockeys and days were at a low level: resultant linear acceleration peak = 5.82 ± 1.08 g, mean = 1.02 ± 0.01 g; resultant rotational velocity peak = 10.37 ± 3.23 rad/s, mean = 0.85 ± 0.15 rad/s; and resultant rotational acceleration peak = 1495 ± 532.75 rad/s2, mean = 86.58 ± 15.54 rad/s2. The duration of an acceleration event was on average 127.04 ± 17.22 ms for linear accelerations and 89.42 ± 19.74 ms for rotational accelerations. This was longer than those noted in many impact and non-impact sports. Jockeys experienced high counts of linear and rotational head accelerations above 3 g and 400 rad/s2, which are considered normal daily living levels (average 300 linear and 445 rotational accelerations per hour of riding). No measurable decline in executive function or dexterity was found after riding; however, a deterioration in visual function (near point convergence and accommodation) was seen. This work lays the foundation for future large-scale research to monitor the head kinematics of riders, measure the effects and understand variables that might influence them.
The purpose of this longitudinal pilot study was to add to the body of research relating to head kinematics/vibration in sport and their potential to cause short-term alterations in brain function. In horseracing, due to the horse’s movement, repeated low-level accelerations are transmitted to the jockey’s head. To measure this, professional jockeys (2 male, 2 female) wore an inertial measurement unit (IMU) to record their head kinematics while riding out. In addition, a short battery of tests (Stroop, Trail Making Test B, choice reaction time, manual dexterity, and visual function) was completed immediately before and after riding. Pre- and post-outcome measures from the cognitive test battery were compared using descriptive statistics. The average head kinematics measured across all jockeys and days were at a low level: resultant linear acceleration peak = 5.82 ± 1.08 g, mean = 1.02 ± 0.01 g; resultant rotational velocity peak = 10.37 ± 3.23 rad/s, mean = 0.85 ± 0.15 rad/s; and resultant rotational acceleration peak = 1495 ± 532.75 rad/s2, mean = 86.58 ± 15.54 rad/s2. The duration of an acceleration event was on average 127.04 ± 17.22 ms for linear accelerations and 89.42 ± 19.74 ms for rotational accelerations. This was longer than those noted in many impact and non-impact sports. Jockeys experienced high counts of linear and rotational head accelerations above 3 g and 400 rad/s2, which are considered normal daily living levels (average 300 linear and 445 rotational accelerations per hour of riding). No measurable decline in executive function or dexterity was found after riding; however, a deterioration in visual function (near point convergence and accommodation) was seen. This work lays the foundation for future large-scale research to monitor the head kinematics of riders, measure the effects and understand variables that might influence them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.