In this paper, we present a review of the experimental identification of dynamic parameters of bearings in a rotating machine. Major emphasis is given to vibration-based identification methods and the review encompasses descriptions of experimental measurement techniques, mathematical modeling, parameter extraction algorithms and uncertainty in the estimates applied to a variety of bearings. The parameter extraction algorithms include the descriptions of governing equations of the rotor-bearing system and identification methods in both time and frequency domains. The identification techniques have been classified based on methods used to excite the system. The review includes a variety of bearings and similar components, which play an active link between the rotating and stationary parts of a machine. Based on the state of the art in bearing identification, conclusions are made and future directions are suggested.