In vitro enzyme cascades possess great benefits, such as their synthetic capabilities for complex molecules, no need for intermediate isolation, and the shift of unfavorable equilibria towards the products. Their performance, however, can be impaired by, for example, destabilizing or inhibitory interactions between the cascade components or incongruous reaction conditions. The optimization of such systems is therefore often inevitable but not an easy task. Many parameters such as the design of the synthesis route, the choice of enzymes, reaction conditions, or process design can alter the performance of an in vitro enzymatic cascade. Many strategies to tackle this complex task exist, ranging from experimental to in silico approaches and combinations of both. This review collates examples of various optimization strategies and their success. The feasibility of optimization goals, the influence of certain parameters and the usage of algorithm-based optimizations are discussed.