Current research introduces understanding of dental-cracks mechanistic with fundamental fracture behavior in natural-teeth and orthodontics including mode I crack under both tension and compression, mode II crack under both clockwise-shear and anticlockwise-shear and mixed-mode cracks under both compression-shear and tension-shear. It depends on experimental models of transparent-Plexiglas including pre-cracks of different orientations angle (b) based on fundamental theoretical fracture analysis with comparison. Problem-concept, cracking aspects of fracture-initiation, propagation-direction, fracture-increment length, critical external-load and fracture path are predicted experimentally and theoretically using directional fracture approach and directional strain-energy density theory. Tests are carried out for (36) samples for compression and tension in LEFM. Friction-resistance between crack-surfaces is considered with derivation of equations and charts. Negative stress-intensity factor (-K
I
) is developed for solving complicated problems of cracks under occlusal compression loads. The occlusal loads are compression and shear producing lateral tensile mixed mode cracks. The critical propagation angle (q
c
), critical propagation load (s
c
) and critical propagation envelope of stress intensity factors (K
I
–K
II
) are developed with respect to crack orientation angle (b) with comparisons. They are necessary to predict the fracture propagation early before teeth-failure. It helps for prevention and control of dental-cracks, correct-restoration, prosthodontics, orthodontics, and development of new dental-materials and technologies.
Supplementary Information
The online version contains supplementary material available at 10.1038/s41598-024-73061-z.