Bioelectricity is an essential characteristic of a biological system that has played an important role in medical diagnosis particularly in cancer liquid biopsy. However, its biophysical origin and measurements have presented great challenges in experimental methodologies. For instance, in dynamic cell processes, bioelectricity cannot be accurately determined as a static electrical potential via electrophoresis. Cancer cells fundamentally differ from normal cells by having a much higher rate of glycolysis resulting in net negative charges on cell surfaces. The most recent investigations on cancer cell surface charge that is the direct bio‐electrical manifestation of the “Warburg Effect,” which can be directly monitored by specially designed nanoprobes, has been provided. The most up‐to‐date research results from charge‐mediated cell targeting are reviewed. Correlations between the cell surface charge and cancer cell metabolism are established based on cell/probe electrostatic interactions. Bioelectricity is utilized not only as an analyte for investigation of the metabolic state of the cancer cells, but also applied in electrostatically and magnetically capturing of the circulating tumor cells from whole blood. Also reviewed is on the isolation of Candida albicans via bioelectricity‐driven nanoparticle binding on fungus with surface charges.