This paper presents the calculation of stress intensity factor (K) solutions for surface cracks in the thread ground of bolts subjected to axial loading directly applied by the nut. The stress-strain computations have been done by means of the finite element method with quarter-point singular isoparametric elements along the crack front. The stress intensity factor is calculated through the stiffness derivative method, by using a virtual crack extension technique to compute the energy release rate. Two modifications are made to improve the accuracy of the results: the displacement not only of the main node, but also of the quarter-point nodes located in the normal plane and the adjacent nodes in the crack line, avoiding both the change of the singularity and the crack curving. The results show that direct loading on the thread flank by a nut increases the stress intensity factor. This effect decreases with the crack length. For the deepest circular cracks, however, nut loading relaxes the K-value, mainly at the crack surface.