Determining the trade-off between performance and costs of a distributed software system is important as it enables fulfilling performance requirements in a cost-efficient way. The large amount of design alternatives for such systems often leads software architects to select a suboptimal solution, which may either waste resources or cannot cope with future workloads. Recently, several approaches have appeared to assist software architects with this design task. In this paper, we present a case study applying one of these approaches, i.e. PerOpteryx, to explore the design space of an existing industrial distributed software system from ABB. To facilitate the design exploration, we created a highly detailed performance and cost model, which was instrumental in determining a cost-efficient architecture solution using an evolutionary algorithm. The case study demonstrates the capabilities of various modern performance modeling tools and a design space exploration tool in an industrial setting, provides lessons learned, and helps other software architects in solving similar problems.