2004
DOI: 10.1007/978-3-540-27819-1_37
|View full text |Cite
|
Sign up to set email alerts
|

An Inequality for Nearly Log-Concave Distributions with Applications to Learning

Abstract: Abstract-We prove that given a nearly log-concave distribution, in any partition of the space to two well separated sets, the measure of the points that do not belong to these sets is large. We apply this isoperimetric inequality to derive lower bounds on the generalization error in learning. We further consider regression problems and show that if the inputs and outputs are sampled from a nearly log-concave distribution, the measure of points for which the prediction is wrong by more than 0 and less than 1 is… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?