Let $$\mu $$
μ
be the Haar measure of a unimodular locally compact group G and m(G) as the infimum of the volumes of all open subgroups of G. The main result of this paper is that $$\begin{aligned} \int _{G}^{} f \circ \left( \phi _1 * \phi _2 \right) \left( g \right) dg \le \int _{\mathbb {R}}^{} f \circ \left( \phi _1^* * \phi _2^* \right) \left( x \right) dx \end{aligned}$$
∫
G
f
∘
ϕ
1
∗
ϕ
2
g
d
g
≤
∫
R
f
∘
ϕ
1
∗
∗
ϕ
2
∗
x
d
x
holds for any measurable functions $$\phi _1, \phi _2 :G \rightarrow \mathbb {R}_{\ge 0}$$
ϕ
1
,
ϕ
2
:
G
→
R
≥
0
with $$\mu ( \textrm{supp} \; \phi _1 ) + \mu ( \textrm{supp} \; \phi _2 ) \le m(G)$$
μ
(
supp
ϕ
1
)
+
μ
(
supp
ϕ
2
)
≤
m
(
G
)
and any convex function $$f :\mathbb {R}_{\ge 0} \rightarrow \mathbb {R}$$
f
:
R
≥
0
→
R
with $$f(0) = 0$$
f
(
0
)
=
0
. Here $$\phi ^*$$
ϕ
∗
is the rearrangement of $$\phi $$
ϕ
. Let $$Y_O(P,G)$$
Y
O
(
P
,
G
)
and $$Y_R(P,G)$$
Y
R
(
P
,
G
)
denote the optimal constants of Young’s and the reverse Young’s inequality, respectively, under the assumption $$\mu ( \textrm{supp} \; \phi _1 ) + \mu ( \textrm{supp} \; \phi _2 ) \le m(G)$$
μ
(
supp
ϕ
1
)
+
μ
(
supp
ϕ
2
)
≤
m
(
G
)
. Then we have $$Y_O(P,G) \le Y_O(P,\mathbb {R})$$
Y
O
(
P
,
G
)
≤
Y
O
(
P
,
R
)
and $$Y_R(P,G) \ge Y_R(P,\mathbb {R})$$
Y
R
(
P
,
G
)
≥
Y
R
(
P
,
R
)
as a corollary. Thus, we obtain that $$m (G) = \infty $$
m
(
G
)
=
∞
if and only if $$H (p,G) \le H (p, \mathbb {R})$$
H
(
p
,
G
)
≤
H
(
p
,
R
)
in the case of $$p' := p/(p-1) \in 2 \mathbb {Z}$$
p
′
:
=
p
/
(
p
-
1
)
∈
2
Z
, where H(p, G) is the optimal constant of the Hausdorff–Young inequality.