Since, during the Coronavirus disease 19 (COVID-19) pandemic, a large part of the human population has become infected, a rapid and simple diagnostic method has been necessary to detect its causative agent, the Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2), and control its spread. Thus, in the present study, we developed a colorimetric reverse transcription-loop-mediated isothermal amplification (RT-LAMP) kit that allows the detection of SARS-CoV-2 from nasopharyngeal swab samples without the need for RNA extraction. The kit utilizes three sets of LAMP primers targeting two regions of ORF1ab and one region in the E gene. The results are based on the colorimetric change of hydroxynaphthol blue, which allows visual interpretation without needing an expensive instrument. The kit demonstrated sensitivity to detect between 50 and 100 copies of the viral genome per reaction. The kit was authorized by the National Administration of Drugs, Food and Technology (ANMAT) of Argentina after validation using samples previously analyzed by the gold standard RT-qPCR. The results showed a sensitivity of 90.6% and specificity of 100%, consistent with conventional RT-qPCR. In silico analysis confirmed the recognition of SARS-CoV-2 variants of concern (B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.427, and B.1.429), and lineages of the Omicron variant (B.1.1.529) with 100% homology. This rapid, simple, and sensitive RT-LAMP method paves the way for a large screening strategy to be carried out at locations lacking sophisticated instrumental and trained staff, as it particularly happens in regional hospitals and medical centers from rural areas.