“…The GEL estimator is then defined aŝ β = arg min β∈B sup λ∈Λn(β)P n (β, λ) , (2.4) whereΛ n (β) = {λ : λ 0 g i (β) ∈ V, i = 1, ..., n}; see NS andSmith (1997, 2001). EL and ET estimators are obtained with ρ(v) = log(1 − v) and V = (−∞, 1) [Qin and Lawless (1994), Smith (1997)] and ρ(·) = − exp(v) [Kitamura and Stutzer, 1997, Imbens et al, 1998, Smith, 1997 whereas CUEβ CUE = arg min β∈Bĝ (β) 0Ω (β) −1ĝ (β) [Pakes andPollard, 1989, Hansen et al, 1996] is a GEL estimator when ρ(·) is quadratic [NS,Theorem 2.1,p.223]. Moreover, MD estimators [Corcoran, 1998] are GEL if the discrepancy function belongs to the Cressie and Read (1984) family [NS,Theorem 2.2,p.224].…”