The Sustainable Development Goals have been criticized for not providing sufficient balance between human well-being and environmental well-being. By contrast, joint agent-environment systems theory is focused on reciprocal synchronous generative development. The purpose of this paper is to extend this theory towards practical application in sustainable development projects. This purpose is fulfilled through three interrelated contributions. First, a practitioner description of the theory is provided. Then, the theory is extended through reference to research concerned with multilevel pragmatics, competing signals, commitment processes, technological mediation, and psychomotor functioning. In addition, the theory is related to human-driven biosocial-technical innovation through the example of digital twins for agroecological urban farming. Digital twins being digital models that mirror physical processes; that are connected to physical processes through, for example, sensors and actuators; and which carry out analyses of physical processes in order to improve their performance. Together, these contributions extend extant theory towards application for synchronous generative development that balances human well-being and environmental well-being. However, the practical examples in the paper indicate that counterproductive complexity can arise from situated entropy amidst biosocial-technical innovations: even when those innovations are compatible with synchronous generative development.