In the past decades, the world has witnessed the successful commercialization of “rocking‐chair”‐type lithium‐ion batteries with lithium metal free anodes. Owing to their safe, green, easy manufacturing, and cost‐efficiency characteristics, rechargeable zinc batteries have recently received more and more attention. However, the practical application of Zn metal batteries is hampered mainly by the dendritic growth of Zn metal anode, which leads to poor Coulombic efficiency, hazards, and various side reactions. Herein, the emerging “rocking‐chair”‐type Zn‐ion batteries are systemically reviewed with Zn host anodes instead of Zn metal anodes. As an introduction, the fundamental principles, advantages, and challenges of “rocking‐chair”‐type Zn‐ion batteries are discussed. Subsequently, the design principles and recent advances of cathode, anode, and electrolyte for “rocking‐chair” Zn‐ion batteries are summarized. To conclude, perspectives on the future of “rocking‐chair” Zn‐ion batteries are presented. It is hoped that this review may provide alternative directions for the design of Zn‐ion batteries.