Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the 2018 intervention campaign, CNOOC aimed to improve production by retrofitting a horizontal well offshore of China. Water mobility in the reservoir was at least 20 times higher than oil mobility and a strong aquifer was located below the well. The well was drilled along a heterogeneous formation with varying properties resulting in an uneven reservoir influx toward the wellbore. Although the well was already completed with passive ICDs, oil production from the well started suffering severely from an early water breakthrough in a couple of weeks after starting production. It was recognized that the challenges could be mitigated by deploying Autonomous Inflow Control Devices (AICDs) which can control the reservoir fluid influx toward the wellbore and therefore optimise the well performance. An AICD is an active flow control device that delivers a variable flow restriction in response to the properties of a fluid and the rate of flow passing through. An integrated workflow comprising history matching and performance evaluation of the existing completion and sensitivity analyses was adopted to determine the best retrofit completion for the well. A well with a horizontal length of 300m was drilled in a thin formation with the oil column averaging 15ft. The optimum retrofit completion was to install a 2 3/8″ inner string consisting of AICD subs, swellable packers inside the existing ICD completion. The well was segmented in three compartments and a tailored AICD completion based on log data from the well was designed to properly restrict the production of water. The string was then connected to a redesigned ESP pump lifting the fluids to the surface. Through teamwork between the companies, the well was successfully re-completed with RCP AICD completions. Over a 9-month period of production, the well performance has been optimised with AICD devices. The AICDs significantly reduced the water cut (WC) of the well from 97% to 87% helping produce 200% more oil compared to production prior to re-completion. This application not only saved the cost of treating extra water but also added value by producing more oil. It also facilitated the connection of another well to the production system due to the enhanced capacity of the system which was then producing a lower volume of liquid. This well is an example that demonstrates the possibility of retrofitting AICDs in existing screens successfully. AICD completions ensured a balanced contribution from all reservoir sections and limited water production significantly. The lessons learnt from pre and post-installation studies will be discussed throughout. The AICD completions enabled the operator to implement an optimum reservoir drainage strategy that uses downhole control that can be manipulated autonomously based on well dynamic conditions to produce more oil.
In the 2018 intervention campaign, CNOOC aimed to improve production by retrofitting a horizontal well offshore of China. Water mobility in the reservoir was at least 20 times higher than oil mobility and a strong aquifer was located below the well. The well was drilled along a heterogeneous formation with varying properties resulting in an uneven reservoir influx toward the wellbore. Although the well was already completed with passive ICDs, oil production from the well started suffering severely from an early water breakthrough in a couple of weeks after starting production. It was recognized that the challenges could be mitigated by deploying Autonomous Inflow Control Devices (AICDs) which can control the reservoir fluid influx toward the wellbore and therefore optimise the well performance. An AICD is an active flow control device that delivers a variable flow restriction in response to the properties of a fluid and the rate of flow passing through. An integrated workflow comprising history matching and performance evaluation of the existing completion and sensitivity analyses was adopted to determine the best retrofit completion for the well. A well with a horizontal length of 300m was drilled in a thin formation with the oil column averaging 15ft. The optimum retrofit completion was to install a 2 3/8″ inner string consisting of AICD subs, swellable packers inside the existing ICD completion. The well was segmented in three compartments and a tailored AICD completion based on log data from the well was designed to properly restrict the production of water. The string was then connected to a redesigned ESP pump lifting the fluids to the surface. Through teamwork between the companies, the well was successfully re-completed with RCP AICD completions. Over a 9-month period of production, the well performance has been optimised with AICD devices. The AICDs significantly reduced the water cut (WC) of the well from 97% to 87% helping produce 200% more oil compared to production prior to re-completion. This application not only saved the cost of treating extra water but also added value by producing more oil. It also facilitated the connection of another well to the production system due to the enhanced capacity of the system which was then producing a lower volume of liquid. This well is an example that demonstrates the possibility of retrofitting AICDs in existing screens successfully. AICD completions ensured a balanced contribution from all reservoir sections and limited water production significantly. The lessons learnt from pre and post-installation studies will be discussed throughout. The AICD completions enabled the operator to implement an optimum reservoir drainage strategy that uses downhole control that can be manipulated autonomously based on well dynamic conditions to produce more oil.
The development of marginal volumes in the Jasmine field is part of Mubadala Petroleum's overall strategy to extend the field's life. This development is accomplished by progressively exploiting increasingly challenging prospects. This paper highlights two case studies to illustrate how Mubadala Petroleum has successfully developed marginal prospects to unlock the Jasmine field's remaining potential. Prospect identification begins with integrated subsurface studies focusing on contingent resources. Several studies were conducted to determine the right technology to mature these marginal prospects. These prospects often involve the requirement to drill Extended Reach Drilling (ERD) wells. This is due to the fact that some platforms are slot constrained, such that wells cannot always be drilled from the nearest platform. One of Mubadala Petroleum's solutions was to drill a horizontal well with a completion that uses an Autonomous Inflow Control Device (AICD) to optimize and enhance oil production. This combination of AICD and ERD horizontal wells has proven successful in the Jasmine field's continuing development. Two wells in this case studies were drilled during the 2018 and 2019 drilling campaigns, illustrate how marginal volumes are developed in the Jasmine field, with each case having unique objectives and challenges. In 2018, one horizontal well was drilled, with an aim to enhance recovery efficiency in the viscous oil reservoir. The well was drilled close to the top reservoir, AICD devices were installed in conjunction with a sand screen to delay water breakthrough, and the well has been in production for two years. The overall strategy was effective in delaying water breakthrough. In 2019, a horizontal well was drilled to develop a relatively small 14ft oil rim below a thick gas cap reservoir. This well was the longest ERD well in the Gulf of Thailand. The well was also successfully drilled and geosteered at 4-5 ft TVD below the gas cap. AICD's were installed to balance the gas cap expansion and aquifer support to optimize oil production. The well has produced at a stable oil rate of 500-600 bbls per day with minimal gas and water production, up to the present date, confirming the validity of AICD technology in reducing the production of unwanted fluids. The AICD has been shown to play a significant role in optimizing production in reservoirs with small oil rims and thick gas caps. AICD completions also help to enhance production recovery from viscous oil reservoirs. Moreover, ERD drilling has improved the feasibility of several remote prospects and minimized the slot availability constraint in the Jasmine field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.