Polymer flooding is a mature Enhanced Oil Recovery process which is used worldwide in many large- scale field expansions. Encouraged by these positive results, operators are still looking at applying the process in new fields even in the context of low oil prices and are evaluating its feasibility in more challenging reservoir conditions: high salinity, high hardness and high temperature. Several solutions have been proposed to overcome the limitations of the conventional hydrolyzed polyacrylamide (HPAM) in these types of challenging environments: biopolymers such as xanthan or scleroglucan, associative polymers, or co- or ter-polymers combining acrylamide with monomers such as ATBS or NVP. Each of these solutions has its advantages and disadvantages, which are not always clear for practicing engineers. Moreover, it is always interesting to study past field experience to confront theory with practice. This is what this paper proposes to do.
The paper will first review the limits of conventional HPAM and other polymers that have been proposed for more challenging reservoir conditions. But more than that, it will focus on the field experience with each of these products to establish some practical guidelines for the selection of polymers depending on the reservoir and fluid characteristics.
One first result of this review is that the limits of conventional HPAM may not be as low as usually expected. Biopolymers appear very sensitive to biodegradation and their success in the field has been limited. Associative polymers appear better suited to near-wellbore conformance control than to displacement processes and some of the new co and ter-polymers are currently being field tested with some measure of success. It appears that the main challenge lies with high temperature rather than high salinity; some field projects are currently ongoing in high salinity (200 g/L) and hardness.
The paper will help set the current limits for polymer flooding in terms of temperature, salinity and hardness based on laboratory work and field experience. This will prove a useful guide for practicing engineers looking to pilot polymer injection in challenging reservoir conditions.