2021
DOI: 10.47059/alinteri/v36i1/ajas21086
|View full text |Cite
|
Sign up to set email alerts
|

An Innovative Method for Predicting and Classifying Inadequate Accuracy in Heart Disease by Using Decision Tree with K-Nearest Neighbors Algorithm

Abstract: Aim: Predicting the Heartdiseases using medical parameters of cardiac patients to get a good accuracy rate using machine learning methods like innovative Decision Tree (DT) algorithm. Materials and Methods: Supervised Machine learning Techniques with innovative Decision Tree (N = 20) and K Nearest Neighbour (KNN) (N = 20) are performed with five different datasets at each time to record five samples. Results: The Decision Tree is used to predict heart disease with the help of various medical conditions, the ac… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?