This research raises questions about the possibilities and options of using the BIM methodology associated with software for the wood design and construction of structure modeling along an asset’s cycle life. Likewise, several academic and research initiatives are reviewed. In this sense, this paper aims to establish an appropriate link between two agendas that the architecture, engineering, and construction (AEC) industry, academia, and governments normally handle separately. By conducting several literature reviews (book, journals, and congresses) and extensive software tests (BIM software: Revit v2023, Archicad v27, Tekla, and wood plug-ins: AGACAD, Archiframe, Timber Framing 2015, WoodStud Frame, etc.), the state-of-the-art was assessed in both fields, and several cases linking BIM and wood are shown in detail and discussed. Various theoretical samples are modelled and shown, and the advantages and disadvantages of each technique and stage are explained. On the other hand, although wood construction has been most common for hundreds of years, this is not the case of BIM software developments associated with this materiality. Furthermore, since the appearance of materials such as steel and reinforced concrete, all software developments have focused on these materials, leaving aside the possibility of developing applications for use in wood projects. According to that previously discussed, it can be concluded that BIM for wood has been used more frequently in academia, that both fields have several common processes, and, in many cases, that only a few BIM-wood tools have been used, thus disregarding the high potential and high level of benefits that result with the application of these methodologies for the complete building life cycle (design, construction, and operation).