Abstract:The study proposes an integrated approach to automated cervical intraepithelial neoplasia (CIN) diagnosis in epithelial patches extracted from digital histology images. The model ensemble, combined CNN classifier, and highest-performing fusion approach achieved an accuracy of 94.57%. This result demonstrates significant improvement over the state-of-the-art classifiers for cervical cancer histopathology images and promises further improvement in the automated diagnosis of CIN.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.