2023
DOI: 10.3233/shti230220
|View full text |Cite
|
Sign up to set email alerts
|

An Integrated Approach to Automated Diagnosis of Cervical Intraepithelial Neoplasia in Digital Histology Images

Abstract: The study proposes an integrated approach to automated cervical intraepithelial neoplasia (CIN) diagnosis in epithelial patches extracted from digital histology images. The model ensemble, combined CNN classifier, and highest-performing fusion approach achieved an accuracy of 94.57%. This result demonstrates significant improvement over the state-of-the-art classifiers for cervical cancer histopathology images and promises further improvement in the automated diagnosis of CIN.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 4 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?